Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioresour Technol ; 399: 130561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460558

RESUMO

During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.


Assuntos
Microalgas , Microalgas/metabolismo , Cloranfenicol/metabolismo , Análise da Demanda Biológica de Oxigênio , Águas Residuárias , Biofilmes , Biomassa , Nitrogênio/metabolismo
2.
J Hazard Mater ; 469: 133933, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452674

RESUMO

The current luminescent bacteria test for acute toxicity with short contact time was invalid for antibiotics, and the non-uniformed contact times reported in the literature for long-term toxicity assessment led to incomparable results. Herein, a representative long-term toxicity assessment method was established which unified the contact time of antibiotics and Vibrio fischeri within the bioluminescence increasing period (i.e. 10-100% maximum luminescence) of control samples. The effects of excitation and detoxification of antibiotics such as ß-lactams were discovered. Half maximal inhibitory concentration (IC50) of toxic antibiotics (0.00069-0.061 mmol/L) obtained by this method was 2-3 orders of magnitude lower than acute test, quantifying the underestimated toxicity. As antibiotics exist in natural water as mixtures, an equivalent concentration addition (ECA) model was built to predict mixture toxicity based on physical mechanism rather than mathematical method, which showed great fitting results (R2 = 0.94). Furthermore, interaction among antibiotics was investigated. Antibiotics acting during bacterial breeding period had strong synergistic inhibition (IC50 relative deviation from 0.1 to 0.6) such as macrolides and quinolones. Some antibiotics produced increasing synergistic inhibition during concentration accumulation, such as macrolides. The discharge of antibiotics with severe long-term toxicity and strong synergistic inhibition effect should be seriously restricted.


Assuntos
Aliivibrio fischeri , Antibacterianos , Antibacterianos/toxicidade , Macrolídeos
3.
Sci Total Environ ; 876: 162801, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907420

RESUMO

Compared with suspended microalgae cultivation, attached microalgae cultivation for wastewater treatment has advantages of low biomass recovery costs and high robustness. As a heterogeneous system, the variation of photosynthetic capacity along biofilm depth lacks quantitative conclusions. The distribution curve of oxygen concentration along the depth of attached microalgae biofilm (f(x)) was detected by dissolved oxygen (DO) microelectrode, and a quantified model was built based on mass conservation and Fick's law. It revealed that the net photosynthetic rate at a certain depth (x) in the biofilm showed a linear relationship with the second derivatives of the distribution curve of oxygen concentration (f″(x)). In addition, the declining trend of photosynthetic rate along attached microalgae biofilm was relatively slow compared with the suspended system. The photosynthetic rate at 150-200 µm depth of algae biofilm was only 3.60 %-17.86 % of that at the surface layer. Moreover, the light saturation points of the attached microalgae got lower along the depth of biofilm. Compared to 400 lx light intensity, the net photosynthetic rate of microalgae biofilm at the depths of 100-150 µm and 150-200 µm increased by 389 % and 956 % under 5000 lx, respectively, showing the high photosynthesis potential with increasing light.


Assuntos
Microalgas , Fotossíntese , Luz , Biofilmes , Biomassa , Oxigênio
4.
Plants (Basel) ; 12(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678996

RESUMO

The addition of functional bacteria (FB) is low-cost and is widely applied in saline-alkali soil remediation, which may gradually become ineffective due to inter-specific competition with indigenous bacteria. To improve the adaptability of FB, the target FB strains were isolated from local saline-alkali soil, and the combined effects of FB and biochar were explored. The results showed that FB isolated from local soil showed better growth than the purchased strains under high saline-alkali conditions. However, the indigenous community still weakened the function of added FB. Biochar addition provided a specific niche and increased the relative abundance of FB, especially for Proteobacteria and Bacteroidota. As a result, the co-addition of 10% biochar and FB significantly increased the soil available phosphorus (AP) by 74.85% and available nitrogen (AN) by 114.53%. Zea Mays's growth (in terms of height) was enhanced by 87.92% due to the decreased salinity stress and extra nutrients provided.

5.
Sci Total Environ ; 857(Pt 1): 159281, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216060

RESUMO

Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.


Assuntos
Chlorella vulgaris , Microalgas , Biocombustíveis , Biomassa , Ácidos Graxos
6.
Sci Total Environ ; 840: 156667, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35705127

RESUMO

The limitation of oxygen and carbon source restricted the TN removal in constructed wetland (CW). Algal pond (AP) could produce oxygen and fix CO2 to improve C/N ratio in water. Therefore, an AP-CW system was established under laboratory conditions to deeply explore the effect of nutrient load distribution and microalgae addition in CWs on pollutant removal. This study showed that AP-CW could remove 49.7% TN and 90.0% TP with no carbon addition in CWs. The significant removal of NH4-N by AP advanced the location of denitrification in CWs. To enhance TN removal, different dosage of microalgae were intermittently added at 20 and 10 cm respectively below the inlet of the vertical flow CW1 and CW2, where the rest NH4-N has been almost oxidized into nitrate. The addition of microalgae influenced the microflora and effluent quality. Microalgae dosage in denitrification area significantly increased the absolute abundance of Σnir. The best TN removal of AP-CW could reach 91.3% when 8 g (dry weight) microalgae was added. However, unlike previous knowledge, microalgae as an organic carbon source would also release N and P during decomposition, leading to increased nutrients in the effluent. The optimal dosage of microalgae was 1 g/5 d in this study. The position and amount of microalgae addition in CWs should be adjusted based on water property and element flow to achieve the best pollutant removal and biomass harvest.


Assuntos
Poluentes Ambientais , Áreas Alagadas , Carbono , Desnitrificação , Nitrogênio/análise , Nutrientes , Oxigênio , Lagoas , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
7.
Sci Total Environ ; 811: 151417, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34742981

RESUMO

Microalgae cultivation with wastewater could realize the advanced water treatment and pollutant conversion to biomass. Attached microalgae cultivation mode, that can avoid the high-cost and energy-extensive consumption process of biomass recovery from water in suspended cultivation mode, is getting increasing attention. During the attached cultivation, light and nutrient concentration in the internal biofilm, play a direct and crucial role in regulating the growth of microalgae. Hence, the distribution of light and nutrients at different depths of biofilm were first explored in this study together with the change rules of its internal distribution under different external nutrient levels. It demonstrated that the gross growth rate was enhanced by increasing the external nutrient level. Seen from the internal sight of biofilm, the internal nutrient level had a positive response to the external nutrient change. Nutrients (especially nitrogen) distributed homogeneously through the biofilm, and no serious nutrient starvation occurred at the surface layer of biofilm. Photosynthesis rate linearly decreased along the depth of microalgae biofilm (10-120 µm). In conclusion, light, rather than nutrient, would be the key influencing factor on attached microalgae growth. How to optimize the internal light distribution would determine the wastewater purification efficiency based on attached microalgae cultivation.


Assuntos
Microalgas , Biofilmes , Biomassa , Nitrogênio/análise , Águas Residuárias
8.
Sci Total Environ ; 752: 141919, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898802

RESUMO

The partially unsaturated constructed wetland was demonstrated to be able to enhance the oxygen supplement for the microbial nitrification. However, the fast gravity flow of wastewater on the smooth surface of substrate in unsaturated zone led to a short contact time between wastewater and biofilm on the surface of substrate for the microbial pollutant oxidation process. While, the strengthened oxygen supplement also consumed organic carbon, intensifying the shortage of electron donator for the denitrification process. To further enhance the efficiency of both nitrification and denitrification processes, two strategies were conducted as follows: (1) adding microfiber in unsaturated zone to extend the hydraulic retention time (HRT) and improve the oxygenating efficiency; (2) adding slow-release carbon source (Poly butylenes succinate, PBS) as electron donor in saturated zone for denitrification. Results showed that the ammonia oxidation efficiency reached up to 97.0% in the microfiber-enhanced constructed wetland. Additionally, adding microfiber provided more sites for microbes and increased the total number of microbes in unsaturated zone. The addition of PBS in the saturated zone obviously improved the denitrification efficiency with the total nitrogen (TN) removal rate raising from 20.6 ± 4.0% to 90.4 ± 2.7%, which excellently solved the problem of poor denitrification efficiency caused by low ratio of carbon to nitrogen (C/N). In conclusion, the association of microfiber and PBS in partially unsaturated constructed wetland finally accomplished the thorough nitrogen removal.

9.
Environ Int ; 139: 105685, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247104

RESUMO

The disposal of reverse osmosis (RO) concentrate (ROC) is a critical challenge impeding the application of RO-based wastewater reclamation. Herein, we proposed an enhanced biotreatment approach for the simultaneous removal of nitrogen, phosphorous, hardness, and methylisothiazolinone (MIT) from ROC by suspended-solid phase cultivation of Scenedesmus sp. LX1. Repeated carrier addition, guided by the developed optimal carrier addition model, efficiently enhanced algal growth and contaminant removal through dynamically controlling the suspended algal density by cell attachment. The maximum algal growth rate (212.2 mg/(L∙d)) increased by 41% compared with the control, and the time needed for reaching the maximum algal biomass (906.7 mg/L) was shortened by 1 d, attributing to the mitigation of density restriction. 91.8% of nitrogen (30.2 mg/L) was removed with 5.5 mg/(L∙d) accelerating removal rate, and phosphate (3.7 mg/L) was completely removed within 1 d. Hardness precursors calcium and inorganic carbon were also removed in large amounts, 268.4 and 128.2 mg/L, respectively. Moreover, suspended-solid phase cultivation significantly mitigated the growth inhibition caused by MIT toxicity, enabled the algae to completely biodegrade MIT of extremely high concentrations (4.7 mg/L and 11.4 mg/L) in a short time. Our results demonstrate the feasibility of suspended-solid phase algal cultivation for simultaneously and effectively removing multiple main contaminants from ROC.


Assuntos
Scenedesmus , Biomassa , Dureza , Nitrogênio , Osmose , Tiazóis , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Bioresour Technol ; 308: 123320, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32284252

RESUMO

Non-suspended microalgae cultivation technology coupled with wastewater purification has received more scientific attention in recent decades. Since the non-suspended microalgae cultivation is quite different from the suspended ones, the following issues are compared in this study such as advantages and disadvantages, pollutant removal mechanisms and regulations, influential factors, and microalgae biomass accumulation. The analysis aims to support the further application of this technology. The median removal rates of COD, TN, TP, NH4+-N and NO3--N were 91.6%, 78.2%, 87.5%, 93.2% and 81.7%, respectively, by non-suspended microalgae under the TN & TP load rates up to 150 mg·L-1·d-1. The main pathway for TN & TP removal is microalgae cell absorbance. Light intensity, pollutant composition and microalgae metabolic types are the major factors that influence pollutant removal and the lipid content of microalgae. Meanwhile the mechanism concerning how macro-outer conditions influence the micro-environment and further growth of non-suspended microalgae requires more investigation.


Assuntos
Microalgas , Biomassa , Lipídeos , Nitrogênio , Fósforo , Águas Residuárias
11.
Sci Total Environ ; 703: 135480, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740061

RESUMO

The presence of sufficient dissolved oxygen (DO) in a constructed wetland (CW) is vital to the process of removing ammonia nitrogen and organics from wastewater. To achieve total nitrogen removal, which is characterised by enhanced ammonia nitrogen removal, this study offers an efficient strategy to increase the oxygen supply by establishing constant unsaturated zones and baffles in simulating constructed wetlands (SCWs). Henceforth, this strategy is addressed as a partially unsaturated SCW. A centrally located high tube was set up inside the wetland to create an unsaturated zone at a higher level. The effectiveness of the unsaturated zone to supplement the oxygen content was evaluated by comparing with controls (an unaerated SCW and an aerated SCW). The results show the chemical oxygen demand removal rate (85 ±â€¯6%) in the partially unsaturated SCW was equivalent to that in the aerated SCW (83 ±â€¯6%), while the ammonia nitrogen removal rate was 11 times higher compared to that of the unaerated SCW. The removal potential of the partially unsaturated SCW under different HRT (hydraulic retention time)s (12, 24, and 36 h) was examined, and the 36 h-SCW performed the best in the removal of organics and nitrogen. The mechanisms behind the unsaturated zone strategy were studied by analysing water and microbe samples along the pathway. The results from the water quality indicators and the quantitative polymerase chain reactions along the pathway showed the unsaturated zone contributed to the removal of primary organics and ammonia nitrogen. The superior performance of unsaturated zone strategy was discussed further using the enrichment of ammonia-oxidising bacteria, mass of oxygen uptake, and baffle design. The results indicate that the amoA gene/16s rRNA gene abundance ratio and the oxygen uptake (336 ±â€¯44 g m-3 d-1) in the partially unsaturated SCW was higher than that observed in the two controls.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Amônia , Análise da Demanda Biológica de Oxigênio , Nitrogênio , Águas Residuárias
12.
Bioresour Technol ; 293: 122086, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31495460

RESUMO

Constructed wetland (CW) for wastewater treatment has attracted increasing attention. In this review, the system configuration optimization, purification effect and general mechanisms of nitrogen removal in CW are systematically summarized and discussed. Ammonia oxidation is a crucial and primary process for total nitrogen (TN) removal in domestic or livestock wastewater treatment. Aeration, waterdrop influent and tidal operation are three main methods to strengthen the oxygen supplement and nitrification process in CW. Aeration significantly increases the ammonia removal rate (almost 100%), followed by the removal of chemical oxygen demand (COD) and TN. Solid carbon source, iron and anode material can be filled as electron donor for the denitrification process. The co-adjustment of oxygen and carbon/electron donor can form different conditions for different nitrogen removal pathways (e.g. the simultaneous nitrification-denitrification, the partial nitrification-denitrification and the anammox process), and achieve the optimal removal of nitrogen.


Assuntos
Águas Residuárias , Áreas Alagadas , Desnitrificação , Nitrificação , Nitrogênio
13.
Bioresour Technol ; 247: 561-567, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28982085

RESUMO

Microalgae are potential candidates for the production of valuable products, such as renewable biodiesel, health products and pigments. However, low biomass productivity has restricted their large-scale applications. In this study, the effects of two auxins (one natural type of indole-3-acetic acid (IAA) and the other synthetic type of 2,4-dichlorophenoxyacetic acid (2,4-D)) on the growth and fatty acid methyl esters (FAMEs) production of a freshwater microalgae Scenedesmus sp. LX1 were investigated. Both auxins showed a "low dosage-promotion and high dosage-inhibition" effect on the growth and FAMEs accumulation. The optimum dosage of IAA and 2,4-D were 1mgL-1 and 0.1mgL-1, respectively. Moreover, the IAA could increase the monounsaturated fatty acid content. The auxins may promote the growth by enhancing the photosynthetic activity through increasing chlorophyll contents. Therefore, auxin significantly enhanced microalgal growth and FAMEs accumulation, and has a potential for application in developing efficient microalgal cultivation.


Assuntos
Ácidos Graxos , Ácidos Indolacéticos , Scenedesmus , Biocombustíveis , Biomassa , Microalgas
14.
Bioresour Technol ; 244(Pt 2): 1254-1260, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28645566

RESUMO

Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h-1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition.


Assuntos
Chlorella , Microalgas , Nitrogênio , Biomassa , Processos Heterotróficos , Lipídeos
15.
Bioresour Technol ; 218: 643-9, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27416514

RESUMO

The role of bacteria/extracellular polymeric substances (EPS) coated carriers on attached microalgae growth in suspended-solid phase photobioreactor (sspBR) was assessed in this study. The results showed that pre-coating cotton with ambient bacteria and their EPS improved the attached microalgal growth by as much as 230% in terms of attached microalgae density. Additionally, the single cell dry weight, chemical composition and oxygen evolving activity of attached microalgae were significantly affected by the presence of bacteria/EPS coating on the cotton carriers. The protein content of microalgae cells cultivated in the ssPBRs with carriers coated by bacteria and sterilized bacteria were on average 26% and 15% more than uncoated carriers, respectively. Through absorbing and immobilizing nutrients from the bulk medium, the bacteria/EPS coating provided the attached microalgae with nitrogen/phosphorus for protein synthesis, especially during the late stages of batch cultivation.


Assuntos
Microalgas/crescimento & desenvolvimento , Fotobiorreatores/microbiologia , Scenedesmus/crescimento & desenvolvimento , Bactérias , Fibra de Algodão , Microalgas/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Fósforo/metabolismo , Scenedesmus/metabolismo
16.
Bioresour Technol ; 153: 399-402, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24380747

RESUMO

A novel suspended-solid phase photobioreactor (ssPBR) was proposed in this paper to solve the problem of microalgal expensive and complex harvest system for biomass/biofuel production. In this ssPBR, solid carriers were added and kept suspended by aeration. Part of microalgae could attach and grow on the carriers. By catching carriers, microalgae could easily be separated from liquid phase. Three kinds of Carriers A, B, C made of cotton, mohair and linen, respectively, were used in this study. Compared with the reactor without carriers, the biomass production in each ssPBR was increased by adding these three kinds of carriers at a dosage of 2g/L, and the maximum increments of biomass were 2.2×10(5) (10.3%), 7.8×10(4) (3.9%) and 4.4×10(5) (20.5%)cells/mL, respectively. By increasing the dosage of Carriers-C to 4g/L, the maximum increment of microalgal biomass could reach up to about 30% in the ssPBR compared with control group.


Assuntos
Biomassa , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Fotobiorreatores/microbiologia , Scenedesmus/crescimento & desenvolvimento , Scenedesmus/isolamento & purificação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA